Translation and analysis of words by ChatGPT artificial intelligence
On this page you can get a detailed analysis of a word or phrase, produced by the best artificial intelligence technology to date:
how the word is used
frequency of use
it is used more often in oral or written speech
word translation options
usage examples (several phrases with translation)
etymology
Text translation using artificial intelligence
Enter any text. Translation will be done by artificial intelligence technology.
Verb Conjugation with the Help of AI ChatGPT
Enter a verb in any language. The system will provide a conjugation table for the verb in all possible tenses.
Free-form query to the ChatGPT artificial intelligence
Enter any question in free form in any language.
You can enter detailed queries from several sentences. For example:
Give as much information as possible about the history of domestication of domestic cats. How did it happen that people began to domesticate cats in Spain? Which famous historical figures from the history of Spain are known as owners of domestic cats? The role of cats in modern Spanish society.
раздел математической логики (См. Логика), посвященный изучению логических форм сложных высказываний, образованных из элементарных высказываний с помощью связок, аналогичных союзам "и", "или", "если..., то...", отрицания ("не") и др.
ЛОГИКАВЫСКАЗЫВАНИЙ
раздел логики, в котором вопрос об истинности или ложности высказываний рассматривается и решается на основе изучения способа построения высказываний из т. н. элементарных (далее не разлагаемых и не анализируемых) высказываний с помощью логических операций конъюнкции ("и"), дизъюнкции ("или"), отрицания ("не"), импликации ("если..., то...") и др. Логику высказываний, задаваемую системой постулатов (аксиом и правил вывода), называют исчислением высказываний.
Логикавысказываний
Логикавысказываний, пропозициональная логика ( — «высказывание») или исчисление высказываний, также логика нулевого порядка — это раздел символической логики, изучающий сложные высказывания, образованные из простых, и их взаимоотношения. В отличие от логики предикатов, пропозициональная логика не рассматривает внутреннюю структуру простых высказываний, она лишь учитывает, с помощью каких союзов и в каком порядке простые высказывания сочленяются в сложные.
Логика высказываний, пропозициональная логика ( — «высказывание») или исчисление высказываний, также логика нулевого порядка — это раздел символической логики, изучающий сложные высказывания, образованные из простых, и их взаимоотношения. В отличие от логики предикатов, пропозициональная логика не рассматривает внутреннюю структуру простых высказываний, она лишь учитывает, с помощью каких союзов и в каком порядке простые высказывания сочленяются в сложные.